Math 304 (Spring 2015) - Homework 8

Problem 1.

Determine whether the following sets of vectors form an orthonormal basis of \mathbb{R}^{2}.
(a) $\left\{(1,0)^{T},(0,1)^{T}\right\}$
(b) $\left\{\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)^{T},\left(\frac{-1}{2}, \frac{\sqrt{3}}{2}\right)^{T}\right\}$
(c) $\left\{\binom{\cos \theta}{\sin \theta},\binom{-\sin \theta}{\cos \theta}\right\}$

Problem 2.

Let $\left\{u_{1}, u_{2}, u_{3}\right\}$ be an orthonormal basis for an inner product space V and let

$$
w=u_{1}+2 u_{2}+2 u_{3} \quad \text { and } \quad v=u_{1}+7 u_{3}
$$

Determine the value of each of the following:
(a) $\langle w, v\rangle$
(b) $\|w\|$ and $\|v\|$
(c) the angel between w and v.

Problem 3.

Given the basis $\left\{(1,2,-2)^{T},(4,3,2)^{T},(1,2,1)^{T}\right\}$ for \mathbb{R}^{3}, use the GramSchmidt process to obtain an orthonormal basis.

Problem 4.

Let

$$
A=\left(\begin{array}{rr}
3 & -1 \\
4 & 2 \\
0 & 2
\end{array}\right) \quad \text { and } \quad v=\left(\begin{array}{c}
0 \\
20 \\
10
\end{array}\right)
$$

(a) Find an orthonormal basis of the column space of A.
(b) Find the projection of v onto the column space of A.

Problem 5.

(Legendre Polynomials) Let $\mathbb{P}_{2}=\{$ all polynomials of degree $\leq 2\}$. We define the following inner product on \mathbb{P}_{2} :

$$
\langle p, q\rangle=\int_{-1}^{1} p(x) q(x) d x
$$

Start with a basis $\left\{1, x, x^{2}\right\}$ of \mathbb{P}_{2}, use the Gram-Schmidt process to obtain an orthonormal basis.

